Exercise 96

The radius r, in inches, of a spherical balloon is related to the volume, V, by $r(V)=\sqrt[3]{\frac{3 V}{4 \pi}}$. Air is pumped into the balloon, so the volume after t seconds is given by $V(t)=10+20 t$.
(a) Find the composite function $r(V(t))$.
(b) Find the exact time when the radius reaches 10 inches.

Solution

Plug the formula for $V(t)$ into the formula for $r(V)$.

$$
\begin{aligned}
r(V(t)) & =\sqrt[3]{\frac{3 V(t)}{4 \pi}} \\
& =\sqrt[3]{\frac{3(10+20 t)}{4 \pi}}
\end{aligned}
$$

Therefore,

$$
r(V(t))=\sqrt[3]{\frac{30(1+2 t)}{4 \pi}}
$$

To get the time when the radius reaches 10 inches, set $r=10$ and solve the equation for t.

$$
10=\sqrt[3]{\frac{30(1+2 t)}{4 \pi}}
$$

Cube both sides.

$$
10^{3}=\frac{30(1+2 t)}{4 \pi}
$$

Multiply both sides by 4π.

$$
1000(4 \pi)=30(1+2 t)
$$

Divide both sides by 30 .

$$
\frac{4000}{30} \pi=1+2 t
$$

Subtract both sides by 1 .

$$
\frac{400}{3} \pi-1=2 t
$$

Therefore, dividing both sides by 2 ,

$$
t=\frac{1}{2}\left(\frac{400}{3} \pi-1\right) \approx 209 \text { seconds. }
$$

